Maps

- A map is an equivalence class of labeled graphs embedded on a compact Riemann surface.
■ Equivalent- if an orientation preserving homeomorphism of the surface takes one graph to the other.
■ Map condition- the graph's complement must be a disjoint union of topological discs (faces).

Maps

- A map is an equivalence class of labeled graphs embedded on a compact Riemann surface.
■ Equivalent- if an orientation preserving homeomorphism of the surface takes one graph to the other.
■ Map condition- the graph's complement must be a disjoint union of topological discs (faces).
- Labels-
- The vertices have distinct names
- We choose a function assigning to each vertex one of its incident edges

Edges cannot intersect

Faces must be discs

Faces must be discs

Dehn twist

These are the same map

How can $\log Z_{n}$ know about maps???

GUE covariances

Gaussian Unitary Ensemble:

$$
d P_{n}(M)=\frac{1}{Z_{n}} e^{-\frac{1}{2} \operatorname{Tr} M^{2}} d M
$$

$$
\mathbb{E}\left[M_{i j} M_{k l}\right]=\delta_{i=l} \delta_{j=k}
$$

Wick's lemma

$f_{1}, \ldots, f_{2 m}$ are linear functionals on $\mathbb{R}^{n \times n}$.

$$
\mathbb{E}\left[f_{1} \ldots f_{2 m}\right]=\sum_{\substack { w \in \begin{subarray}{c}{\text { Wick pairings } \\
\text { of } 1, \ldots, 2 m{ w \in \begin{subarray} { c } { \text { Wick pairings } \\
\text { of } 1 , \ldots , 2 m } }\end{subarray}} \mathbb{E}\left[f_{w(1)} f_{w(2)}\right] \ldots \mathbb{E}\left[f_{w(2 m-1)} f_{w(2 m)}\right]
$$

An example of a Wick pairing of $1, \ldots, 8$ is $\{\{1,6\},\{2,5\},\{3,4\},\{7,8\}\}$.

Matrix Integrals and combinatorics

Here is a very brief hand wave at the connection between matrix integrals in map combinatorics.

$$
\begin{aligned}
\mathbb{E}\left[\left(\operatorname{Tr} M^{4}\right)^{p}\right]= & \mathbb{E}\left[\prod_{q=1}^{p} \sum_{i_{q}, j_{q}, k_{q}, l_{q}=1}^{n} M_{i_{q}, j_{q}} M_{j_{q}, k_{q}} M_{k_{q}, l_{q}} M_{l_{q}, i_{q}}\right] \\
= & \sum_{\substack{i_{1}, j_{1}, k_{1}, \ldots \\
, j_{p}, k_{p}, l_{p}=1}}^{n} \sum_{w \in \begin{array}{c}
\text { Wick pairings } \\
\text { of } 1, \ldots, 4 \mathrm{p}
\end{array}}\left(\begin{array}{c}
\text { Product of quadratic } \\
\text { expectations given by } \\
w \text { and index variables }
\end{array}\right) \\
= & \sum_{\substack{\text { 4-valent fatgraphs } \\
\text { on } p \text { vertices }}} n^{\text {Faces }}
\end{aligned}
$$

A Wick pairing and the corresponding map

The Wick pairing $\left(i_{11}, j_{13}\right),\left(i_{13}, k_{2_{3}}\right),\left(k_{1_{3}}, k_{3_{3}}\right),\left(i_{2_{3}}, i_{i_{3}}\right),\left(j_{23}, j_{3_{3}}\right)$ corresponds to a fatgraph and a map.

A Wick pairing and the corresponding map

The Wick pairing $\left(i_{11}, j_{1_{3}}\right),\left(i_{1_{3}}, k_{2_{3}}\right),\left(k_{1_{3}}, k_{3_{3}}\right),\left(i_{2_{3}}, i_{33}\right),\left(j_{23}, j_{3_{3}}\right)$ corresponds to a fatgraph and a map.

